A recent EC&M article discusses new research into the wavelength, dose, and duration of UV disinfection to deactivate the virus that causes COVID-19. In a newly published study, researchers from Binghamton University’s Thomas J. Watson College of Engineering and Applied Science answer many of those questions and lay the foundation for health standards about what offers true disinfection.

The paper, titled “Systematic evaluating and modeling of SARS-CoV-2 UVC disinfection” and published in Scientific Reports, is written by Distinguished Professor Kaiming Ye, chair of the Department of Biomedical Engineering; BME Associate Professor Guy German and BME Professor Sha Jin, along with PhD student Sebastian Freeman; Zachary Lipsky, PhD ’21; and Karen Kibler from the Biodesign Institute at Arizona State University.

The best results during the study came from a range of 260 to 280 nanometers, which is commonly used in LED UVC lights. Ye believes the most important part of this research is that it offers a scientific basis for standardizing and regulating claims from manufacturers of UV disinfectant devices.

“The system we came up with can become the model for anybody who wants to standardize the dosage,” he said. “This is how to determine the eradication of SARS-CoV-2 using UVC — maybe also SARS-CoV-3, SARS-CoV-4, SARS-CoV-5. We hope we never get there, but we need to be prepared.”

Read the full article here.